R. J. Audette, ${ }^{1}$ Ph.D. and R. F. E. Percy, ${ }^{2}$ Chem. Tech. (Hons.)

A Rapid, Systematic, and Comprehensive Classification System for the Identification and Comparison of Motor Vehicle Paint Samples. II: Paint Data Collected from Chrysler-Manufactured Cars

REFERENCE: Audette, R. J. and Percy, R. F. E., "A Rapid, Systematic, and Comprehensive Classification System for the Identification and Comparison of Motor Vehicle Paint Samples. II: Paint Data Collected from Chrysler-Manufactured Cars," Journal of Forensic Sciences, JFSCA, Vol. 27, No. 3, July 1982, pp. 622-670.

Abstract

A rapid system for the identification of Chrysler Corp. vehicles from paint samples has been devised. The data presented outline the production relationships of Chrysler vehicle lines to their various assembly plants from 1960 to 1979. Marketing trends seen in our data illustrate the usefulness of a statistical data base. Microscopic and chemical data from the analysis of 107 core samples, representing paint samples collected from 1452 Chrysler Corp. vehicles, are presented and discussed.

KEYWORDS: criminalistics, automobiles, paints, classifications
The identification of hit-and-run vehicles through the analysis of paint chips left at the scene is widely employed in forensic science laboratories. The paint classification system developed within our laboratory to narrow the possible sources of a vehicle employs both microscopic and chemical techniques [1]. In this paper we present a summary of the core data representing paint samples from 1452 Chrysler Corp. vehicles.

Results and Discussion

The coded data within our files use the format previously described for computer retrieval of individual pieces of information [1]. Although our computerized data system for paint was designed as a result of this work, the information in this paper has been organized in a slightly different format to accommodate a rapid manual searching procedure for those laboratories that do not have access to all our data.

The vehicle line abbreviations (Table 1) that were employed for the Chrysler sample identification numbers (SIN) identify the vehicle lines covered in Table 2, which outlines the production relationships of the various vehicle lines and assembly plants for specific years.

[^0]TABLE 1-Chrysler Corp. SIN vehicle line filing code abbreviations.

Plymouth Division		Dodge Division		Chrysler/Imperial Division	
Vehicle Line	Abbreviation	Vehicle Line	Abbreviation	Vehicle Line	Abbreviation
Barracuda	BCUDA	Aspen	ASPEN	Cordoba	CORD
Belvedere	belve	Challenger	chall	Crown	Crown
Carevelle	care	Charger	charg	Imperial	IMPER
Fury	fury	Coronet	CORNT	LeBaron	lebar
Gran	GRAN	Dart	DART	Newport	NPORT
Gran Fury	Gfury	Diplomat	DIPLO	New Yorker	NYORK
GTX	gTX	Demon	demon	Town \& Country	т\&c
Horizon	Horiz	Dodge	dodge	Three Hundred	three
Road Runner	ROAD	Magnum	Mag	Windsor	wind
Satellite	slite	Monaco	mon		
Savoy	Savoy	Omni	omni		
Valiant	vali	Polara	POLAR		
Volare	volar	St. Regis	streg		
		Matador	mat		
		Royal Monaco	Rymon		

Chrysler's assembly plants and corresponding plant codes are given on the top row. The upper-case lettering in the table indicates that a paint sample from that vehicle line was held within our files, while the lower-case lettering indicates that a particular vehicle line was reported to have originated from that plant. With the exception of the Windsor, Ont., plant, we were unable to verify which plants manufactured which vehicle lines before 1966. The Windsor plant produced all Chrysler vehicle lines for the Canadian market before the 1965/ 1966 United States-Canada Autopact. Since that time, and especially since the early 1970s, individual assembly plants have tended to manufacture specific "corporate twins." For example, the full-sized Furys and Polaras were made in Belvedere, while the compact Darts and Valiants were assembled in Hamtramck. Thus, even though we were fairly confident that the Newport, Three Hundred, and New Yorker vehicle lines were manufactured exclusively in Detroit before 1966, for those three vehicle lines only data from samples were included in Table 2. From 1960 to 1965 the Belvedere plant did not exist and the Los Angeles plant went out of production after the 1972 model year.
Years of manufacture for every individual vehicle line or series̀ that was manufactured by the four Chrysler divisions is illustrated in Figs. 1, 2, and 3. The abbreviation codes for the individual vehicle series are included in Fig. 1. The black circles indicate that the vehicle series was not produced in that model year.
Data from the National Auto Theft Books aided in compiling this manufacturing data. However, samples were obtained from certain vehicle series that, according to these books, did not exist. For example, samples were collected from 1966 Dodge Polara 440s (Fig. 2), which were not reported by the National Auto Theft Books as having been manufactured.

The data in Table 2 and Figs. 1 to 3 are necessary to completely identify, within any model year, the specific vehicle line or series produced in any Chrysler assembly plant. The bottom rows in Figs. 1 to 3 give the individual codes for the assembly plants where the vehicle lines were manufactured, while the main body identifies which vehicle series were produced. The vehicle line designations in Table 2 identify every line manufactured for a particular year in a specific plant. For instance, Table 2 would show that from 1970 to 1973 the Lynch Road plant produced Dodge Coronets and Chargers, Plymouth Road Runners and Satellites, and some Furys and GTXs. Figures 1 to 3 indicate which vehicle series were manufactured in each model year. In 1970, for example, only the Satellite and Satellite Sport were manufactured, whereas in 1971 the Sport was not manufactured but the Custom, Sebring Plus,
TABLE 2-Chrysler Corp. assembly plant vehicle production data.

 足：Nㅜㄹ

㥉 留

贸留 CORNT
BELVE
SLITE
gtx CORNT
BELVE
ROAD SLITE
GTX
FURY
CORNT
BELVE
ROAD
SLITE
gtX
fury
CORNT
charg
FURY
ROAD ROAD CORNT CORNT
8

$\stackrel{\rightharpoonup}{2}$

∞

oi

$\frac{8}{8}$

$\stackrel{\rightharpoonup}{\sigma}$

$\stackrel{N}{N}$
TABLE 2 (continued)-Chrysler Corp. assembly plant vehicle production data.

Model Year	Assembly Plants								
	Lynch Rd. (A)	Hamtramck (B)	Detroit (C)	Belvedere (D)	Los Angeles (E)	Newark (F)	St. Louis (G)	Windsor (R)	Windsor (R)
1973	CORNT	DART	nPort	T\&C		polar	cornt	DART	
	CHARG	chall	NYORK	POLAR		MON	charg	vali	
	road	vali	IMPER	MON		FURY	slite	Road	
	slite	bcuda		FURY gran		gran	road	Slite	
1974	CORNT	DART	nPort	T\&		DART	cornt	DART	
	charg	chall	nyork	MON		vali	charg	vali	
	road	vali	IMPER	FURY		FURY	Slite	Road	
	slite	bcuda		gran			road	Slite	
1975	CORNT	dart	nPORT	T\&		dart	DART	CORD	
	Charg	vali	nyork	RYMON		vali	CORNT	DART	
	ROAD		IMPER	MON			vali	CHARG	
	FURY			grury			FURY	vali	
	GFURY								
1976	CORNT	dart	NPORT	NPORT		DART	DART	CORD	
	Chirg	ASPEN	NYORK	T\&C		vali	aspen	CHARG	
	FURY	vali		rymon		aspen	vali		
		volar		MON		volar	volar		
				gFURY					
1977	cearg	ASPEN	NPORT	nPORT		aspen	lebar	CORD	
	MON	volar	nyork	T\&C		volar	aspen	CHARG	
	FURY			RYMON			diplo		
				gFury			volar		
1978	mon	aspen	nport	omni		aspen	lebar	cord	
	fury	volar	nyork	horiz		volar	diplo	charg	
							care	mag	
1979	nport	aspen		omni		aspen	lebar	cord	
	nyork	volar		horiz		volar	diplo	mag	
						lebar	care	three	

CHRYSLER

ave	arenue
BRM	BROUGHAM
CNTY	counter
EPE	coupe
cus	custom
CWD	CRESTW000
OLX	oeluxe
OSTR	DUSTER
MOL	MEDALION
RG 7	HEGENT

RLY RAILYE

RNR RUNAER
SBN Suburban
SE SHecimi eution

$$
5 P_{i} \quad 5 P_{E C I A L}
$$

sel
SPORT

SWGA SWINGER

YKR YOAKER

FIG. 1-Chrysler Division's vehicle line and series production data.

Brougham, and Regent series were. Similar vehicle series trends can be seen in Coronets and Chargers between 1970 and 1973. Thus, the corresponding partial Vehicle Identification Numbers for the vehicle series can be determined for use by the Motor Vehicle Branch computers in searching for registered owners.

Assembly plant data were recorded in the main body of Figs. 1 to 3 only for those vehicle series where a sample was obtained, even when other information indicated that all vehicle series were produced in that plant. These figures indicate possible marketing trends that may statistically indicate the most probable vehicle series registered within a specified area, even though the other vehicle series cannot be eliminated. For example, the Dodge Coronets (Fig. 2) manufactured in St. Louis were seen even in Alberta in 1967, 1968, and 1975. From 1970 to 1974, the Coronets originated from Lynch Road. That does not mean they were not

FIG. 2a—Dodge Division's vehicle line and series production data for 1970-1979.
manufactured in St. Louis for those years, just that they were not routinely observed within our area. As with the Valiants [1], the Darts (Fig. 2) between 1973 and 1974 also indicate possible marketing trends within individual vehicle series. The 1973 Darts and Dart Customs originated from Windsor, while the Sport and Sport 360s originated from Hamtramck only. In 1974 the first two series were marketed from both Hamtramck and Windsor, while the latter two were still marketed from Hamtramck. This would indicate that either the latter two vehicle series were not made in Windsor or that there was a distinct marketing trend in these vehicle series. Either way, we would not normally expect to see a Windsorassembled 1973 or 1974 Dart Sport or Sport 360 in Alberta.

With all the information from the correlated microscopic and chemical data, a final set of 108 Chrysler core undercoat standards were obtained. Table 3 presents data from the core samples, using the abbreviations previously given [1]. The table designates the core SINs as well as the corresponding assembly plant, area on the vehicle, undercoat code, color/chemi-

FIG. 2b-Dodge Division's vehicle line and series production data for 1960-1969.
cal descriptor sequence code, undercoat data, and chip board position (indicating the position where the core undercoat standard is mounted in our collection [Fig. 4]). The undercoat data are composed of the core infrared spectrum (IR) descriptor and the corresponding Munsell color code [2]. The Munsell coordinates defining the undercoat colors were chosen with large enough searching parameters that any forensic scientist would be able to obtain initial access to the data system. However, the final color comparisons always had to be conducted on the core undercoat standard. Blanks in the core IR column indicate insufficient quantities for a chemical analysis, while blanks in the adjoining Munsell code column indicate that the layer was so thin that significant bleed-through from another colored layer seriously affected the assignment of a color coordinate. By our previously stated convention [1], the undercoats are numbered sequentially from the topcoat downwards.
In establishing the core data, it was determined that quite frequently several distinctly different colors, some with the same Munsell coordinates, were represented by a single infrared

PLYMOUTH

FIG. 3-Plymouth Division's vehicle line and series production data.
TABLE 3-Core data for Chrysler Corp. ${ }^{a}$

SIN	AP	AOV	UCC	Color Chemical Descriptor Sequence	UC(1) Data		UC(2) Data		UC(3) Data		UC(4) Data		CBP
					CIR	Munsell Code [2]	CIR	Munsell Code	CIR	Munsell Code	CIR	Munsell Code	
60fury 1	E	LRF	13	1/1	Gy6-1	N7/-	Br6-	10R3/2	\ldots	\ldots	\ldots		A01
60 wind 1	R	LD	13	2/2	Gy6-2	N4/-	Br6-1	10R3/2	\ldots				A02
61 valn 1	R	LFF	13	2/3	Gy6-2	N4/-	Br6-2	10R3/2					A03
62 vall 2	B	RFF	13	3/4	Gy6-2	5Y6/1	Br6-3	10R2.5/1	\ldots	\ldots	\ldots	\ldots	A04
62 crown 1	C	RFF	13	4/5	Gy6-3	N5/-	Br6-4	10R3/2					A05
63 vair 5	E	LRF	113	6/5/6	Gy6-	N6/-	Gy6-4	5Y6-1	Br6-5	2.5YR3/2	\ldots		A06
63 polar 1	R	RFF	13	7/3	Gy6-5	N4/-	Br6-2	10R3/2	\ldots		A07
64 fury 4	A	RRF	13	8/7	Gy6-	5G5/1	Br6-6	10R3/2	\ldots	...	\ldots		A08
65 Fury 12	B	LRF	13	9/8	Gy6-6	N6/-	Br6-7	10R3/2	\ldots	...	\ldots	\cdots	A09
65 savoy 2	R	LFF	13	11/3	Gy6-8		Br6-2	10R3/2	\ldots				A10
66 CORNT 2	A	LFD	13	10/9	Gy6-7	5G5/2	Br6-8	2.5YR3/2				\ldots	B01
66sute6	A	LRF	113	12/10/9	Gy6-9		Gy6-7	5G5/2	Br6-8	2.5YR3/2	\ldots		B02
66Fury 18	B	T	13	13/10	Gy6-8	N6/-	Br6-9	2.5YR2.5/2					B03
66 Fury 8	R	H	13	14/10	Gy6-8	N5/-	Br6-9	2.5YR2.5/2	\ldots	\ldots	\ldots	\ldots	B04
67 vall 3	B	LFF	13	15/8	Gy6-6	N5/-	Br6-7	10R3/2			\cdots	\cdots	B05
$67 \mathrm{fury6}$	R	LRF	113	17/16/10	Gy6-11		Gy6-10	5G5/1	Br6-9	2.5YR2.5/2			B06
68 cornt 4	A	LRF	1313	10/9/10/9	Gy6-7	5G5/2	Br6-8	2.5YR3/2	Gy6-7	5G5/2	Br6-8	2.5YR3/2	B07
68 CORNT 3	A	RFF	13	18/11	Gy6-12	N6/-	Br6-24	10R3/4	B08
68dart12	B	LRF	13	19/8	Gy6-6	N6/-	Br6-7	10R3/2					B09
$68 \mathrm{dart8}$	B	RRF	2	1	Bk6-1	N2.5/-			\ldots	\ldots			B10
68 Fury 9	R	LFF	13	16/10	Gy6-10	5G5/1	Br6-9	2.5YR2.5/2	\ldots	...	\ldots	...	C01
68 valig	R	LFF	13	20/12	Gy6-13		Br6-10	10R3/4					C02
69bcuda 3	B	H	13	21/3	Gy6-13	N5.5/-	Brb-11	10R3/4					C03
$69_{\text {NYORK } 1}$	C	LFF	131	10/9/10	Gy6-7	5G5/2	Brf. 8	2.5YR3/2	Gy6-7	5G5/2	\ldots	\ldots	C04
69 road 3	G	LFF	13	22/15	Gy6-14	N5.5/-	Br6-12	10R3/2					C05
69polar8	R	F	13	23/10	Gy6-15	7.5GY5/2	Br6-9	2.5YR2.5/2			\cdots		C06
$69 \mathrm{Fury2}$	R	RD	13	24/16	Gy6-16	5G5/1	Br6-13	10R3/2	\ldots		C07
69mon6	R	LFHB	13	25/17	Gy6-9	N5.5/-	Br6-14	10R3/4			...		C08
70sute6	A	LRF	313	18/27/9	Br6-12	10R3/4	Gy6-17	5G5/1	Br6-8	2.5YR3/2	\ldots		C09
70nport5	C	H	13	28/18	Gy6-14	N5.5/-	Br6-12	10R3/2			\ldots	\ldots	C10
70fury14	R	LR	13	32/10	Gy6-15	5G5/1	Br6-9	2.5YR2.5/2					D01
70road4	R	LD	213	2/31/18	Bk6-	N2/-	Gy6-14	N5.5/-	Br6-12	10R4/4			D02

TABLE 3 (continued)-Core data for Chrysler Corp. ${ }^{a}$

SIN	AP	AOV	UCC	Color/ Chemical Descriptor Sequence	UC(1) Data		UC(2) Data		UC(3) Data		UC(4) Data		CBP
					CIR	Munsell Code [2]	CIR	Munsell Code	CIR	Munsell Code	CIR	Munsell Code	
70dart 7	R	LFF	2	3	Bk6-2	N2/-							D03
70Gtx 3	R	LD	13	34/19	Gy6-20	N6/-	Br6-13	10R3/2					D04
70 MON 2	R	LFHB	132	32/10/5	Gy6-15	5G5/1	Br6-9	2.5YR2.5/2	Bk6	N2.5/	. \cdot	\ldots	D05
70darti0	R	RFF	12	33/4	Gy6-19	N4/-	Br6-3	N2/-	\ldots	. .	D06
71CORNT2	A	LFF	13	26/18	Gy6-14	N5.5/-	Br6-12	10R3/2	\ldots	. .	D07
71valy1	B	RRF	13	21/20	Gy6-13	N5.5/-	Br6-15	10R3/4		D08
71chall 3	B	H	13	21/14	Gy6-13	N5.5/.	Br6-12	10R4/4		\ldots	. .		D09
71DART1 ${ }^{\text {b }}$	B	RFHB	11313	$\begin{aligned} & 25 / 30 / 14 / 30 / \\ & 14 \end{aligned}$	Gy6-9	N5.5/-	Gy6-18	N4.5/-	Br6-12	10R4/4	Gy6-18	N4.5/-	D10
71FURy 7	D	RRF	13	29/18	Gy6-14	N5/-	Br6-12	10R3/2 \cdot	E01
71POLAR11	D	RFHB	113	35/29/18	Gy6-21	N6/-	Gy6-14	N5/-	Br6-12	10R3/2			E02
71dART2	R	LFHB	1313	20/13/36/18	Gy6-13		Br6-10	10R3/4	Gy6-18	N5.5/-	Br6-12	10R3/2	E03
72NPORT3	C	LD	13	37/21	Gy6-13	N5.5/-	Br6-12	10R3/2	-	E04
72 slite 11	F	LFF	13	38/22	Gy6-13	N5/-	Br6-16	10R3/4	. . ${ }^{\text {, }}$. .		\ldots	E05
72 slite 3	R	RFF	13	36/19	Gy6-18	N5.5/-	Br6-13	10R3/2	'.'		. . \cdot	\ldots	E06
72 slite 10	R	RFF	113	39/40/19	Gy6-		Gy6-22	N5/-	Br6-13	10R3/2			E07
73charg 4	A	LRF	12	41/7	Gy6-16	N5.5/-	Bk6-5	N3.5/-	\ldots	. .	E08
73DART4	B	RD	12	21/6	Gy6-13	N5.5/-	Bk6-4	N3.5/-	,	\ldots	...	E09
73NYORK3	C	LFF	13	42/18	Gy6-16	N5.5/	Br6-12	10R3/2	E10
73NPORT5	C	LFF	13	43/21	Gy6-13	N5.5/-	Br6-12	10R3/2	F01
73FURY5	D	LFF	13	30/18	Gy6-18	N4.5\% -	Br6-12	10R3/2	F02
73FURY4	D	LF	123	41/7/18	Gy6-16	N5.5/-	Bk6-5	N3.5/-	Br6-12	10R3/2	\cdots	, .	F03
73 FURY 8	F	RD	13	38/23	Gy6-13	N5.5/-	Br6-11	10R3/4	F04
74 sLITE 2	A	LD	12	41/6	Gy6-16	N5.5/-	Bk6-4	N3.5/-	F05
74 slite 4	A	LFF	13	44/24	Gy6-23	N5/-	Br6-17	10R3/4	F06
74chall6	B	LFHB	123	41/7/25	Gy6-16	N5.5/	Bk6-5	N3.5/-	Br6-12	10R3/2	F07
74DART12	B	RFF	121	41/7/25	Gy6-16	N5.5\% -	Bk6-5	N3.5/-	Gy6-9	N5.5/-	\ldots		F08
74DART15	B	LRF	13	46/24	Gy6-23	N5/-	Br6-17	10R3/4	-	F09
74NPORT1	C	LFF	13	47/24	Gy6-25		Br6-17	10R3/4 ${ }^{\text {, }}$		F10
74NPORT2	C	RFD	13	48/26	Gy6-23	N5/-	Br6-18	10R3/4	. \cdot	G01
$74 \mathrm{MON17}$	D	RRF	13	49/27	Gy6-26	N5/-	Br6-19	10R3/2	. .	\cdots	. \cdot.	-.	G02

 74mon13 $\underset{\sim}{n}$范员足曷解 3
4
3
n号 응 을㤨志告 \circ
0
0
0菏 N N 2
2
0
0
0
0露
 4
0
0
0
0
 0
0
0
0
0
0 0
总
空 N
0
0
0
0
0 N
N
E
0
0 0
0
0
0
0
0 N Nㅡㅇ总
0
美
TABLE 3 (continued)-Core data for Chrysler Corp. ${ }^{\text {a }}$

SIN	AP	AOV	UCC	Color/ Chemical Descriptor Sequence	UC(1) Data		UC(2) Data		UC(3) Data		UC (4) Data		CBP
					CIR	Munsell Code [2]	CIR	Munsell Code	CIR	Munsell Code	CIR	Munsell Code	
77nyork 4	C	FHB	2	18	Gy6-10	'2/-				\ldots	\ldots	\ldots	K02
779FURY3	D	RFF	13	60/26	Gy6-25	+5.5/-	Br6-18	10R3/4					K03
77 nPort 2	D	FHB	132	60/33/15	Gy6-25	N5.5/-	Br6-22	10R3/2	Bk6-9	N2.5/-		\ldots	K04
77 CORD 14	R	LFF	113	66/40/16	Gy6-33	5GY5/1	Gy6-22	N5/-	Br6-13	10R3/2	\ldots	\ldots	K05
77 CORD 16	R	RD	11	67/68	Gy6-32	N6.5/-	Gy6-34	5GY5/1		...	\ldots	\ldots	K06
77charg6	R	RD	13	40/16	Gy6-22	N5/-	Br6-13	10R3/2				\cdots	K07
77 charg 1	R	RFHB	132	40/16/22	Gy6-22	N5/-	Br6-13	10R3/2	Bk6-9	N2/-	\ldots	\cdots	K08
76 CORD 22	R	RRF	1	65	Gy6-3	N5.5/-						\ldots	J08
76 charg 2	R	RFHB	132	40/19/19	Gy6-22	N5/-	Br6-13	10R3/2	Bk6-5	N2/-	\ldots	\ldots	J09
77volar 4	B	LFF	2	20	Bk6-11				...		\ldots	\ldots	J10
77NYORK1	C	RRF	22	17/21	Bk6-9	N2.5/-	Bk6-12	N2.5/-	\ldots	...			K01
77nyork4	C	FHB	2	18	Bk6-10	N2/-			\ldots	\ldots	\ldots	\ldots	K02
779FURY3	D	RFF	13	60/26	Gy6-25	N5.5/-	Br6-18	10R3/4			\ldots	\ldots	K03
77NPORT2	D	FHB	132	60/33/15	Gy6-25	N5.5/-	Br6-22	10R3/2	Bk6-9	N2.5/-	\ldots		K04
77 cordol4	R	LFF	113	66/40/16	Gy6-33	5GY5/1	Gy6-22	N5/-	Br6-13	10R3/2	\cdots		K05
77 CORD 16	R	RD	11	67/68	Gy6-32	N6.5/-	Gy6-34	5GY5/1	\ldots	\ldots	K06
77 charg 6	R	RD	13	40/16	Gy6-22	N5/-	Br6-13	10R3/2				\ldots	K07
77 charg 1	R	RFHB	132	40/16/22	Gy6-22	N5/-	Br6-13	10R3/2	Bk6-9	N2/-			K08

${ }^{a}$ SIN $=$ sample identification number, $\mathrm{AP}=$ assembly plant $[1], \mathrm{AOV}=$ area on vehicle, $\mathrm{UCC}=$ undercoat code, $\mathrm{CIR}=$ core infrared spectrum, $\mathrm{CBP}=$ core board position [1]; $\mathrm{L}=$ left, $\mathrm{R}=$ right or rear, $\mathrm{F}=$ fender or front, $\mathrm{H}=$ hood, $\mathrm{T}=$ trunk, $\mathrm{D}=$ door, $\mathrm{EX}=$ extension, and $\mathrm{HB}=$ header bar. ${ }^{b}$ This model has a fifth undercoat, core IR Br6-12 and Munsell Code 10R4/4.

CHRYSLER

FIG. 4-Chrysler Corp. core chip boards.
spectrum. In general, wherever the IRs were different, the corresponding undercoat colors were different. In two circumstances, however, we observed colors that were indistinguishable except by IRs. (These anomalies occurred for the browns of the 62crown1 and the 64 FURY 4 and for the grays represented by the 71 fURy 7 and the 74 cornt 4 , where the last digit indicates the sequential sample number.)

Our undercoat data (Table 3) indicates it would not be possible to distinguish between samples of the same chemistry but different colors with the aid of only the broad Munsell coordinates to describe color. Because other forensic science laboratories will not have copies of our authentic paint chips, a color/chemical descriptor coding system was developed to indicate the color differences with relationship to the chemistry. This was accomplished within each undercoat class (gray [Gy], black [Bk], brown [Br], and white [W]) by assigning a sequential number to every undercoat that possessed a different color or chemistry from other
undercoats within the class. The individual color/chemical descriptors were strung together to obtain a sequential number that would individualize that particular undercoat sequence. The undercoat code in conjunction with the color/chemical descriptor sequence would then indicate the specific color sequence. For example, a SIN having an undercoat code of 13 would indicate the sample has a gray over brown layer sequence while the color/chemical descriptor sequence of $10 / 8$ would denote the individual gray ($10 /$) and brown (/8) layers. The grays in SINs 60Fury 1 and 60 wind1, as outlined in Table 3, illustrate the color/chemical descriptor code system. These samples have different core IRs and significantly different Munsell coordinates. The color/chemical descriptors $1 /$ and $2 /$ indicate these differences.

The significance of the codes becomes apparent when 60 wIND 1 to 61 vaL 1 are compared, where the gray IRs are identical and the Munsell codes are the same. The $2 /$ for both samples indicates that the grays are the identical color. This would not have been ascertainable within the operating error limits of the Munsell coordinates. For the grays in the 65 fury 12 and 68dart12 samples, the core IR and Munsell data would have indicated they had the same color and chemistry. However, the grays were different, whereas the browns and IRs were identical; the color/chemical descriptor sequences $9 / 8$ and $19 / 8$ indicate the grays were different while the browns were the same.

While examining the Chrysler undercoats we observed a phenomenon that was not seen for other manufacturers, and appears to be characteristic of Chrysler Corp. vehicles. In some circumstances, the bottom undercoat layer was predominantly brown with circles of gray interspersed throughout it. In other instances, the gray and brown layers were intermixed. We termed this a mottling effect. Wherever this mottling occurred we adopted the convention that the predominant color would define that layer; the interspersed layer was neglected for purposes of recording the data in Table 3.

In general, the assembly plants where slight gray mottling was occasionally observed were Lynch Road (1968 to 1970), Hamtramck (1971, 1974, and 1975), Detroit (1968 and 1971), Belvedere (1973 to 1975), and Windsor (1964, 1965, 1970, 1974, and 1976). However, mottling was more prevalent in Hamtramck and Belvedere in 1974 and 1975. In only one instance was it not possible to obtain a distinct separation of the mottled colors for an IR analysis. The brown layer (Br6-19) of the 74mon17 consists of both gray and brown.

Tables 4,5, and 6 present the core IR data for the gray, brown, and black undercoats, respectively. Each table contains the core IR numbers, the coded chemical data [1] from the interpretation of the IR spectra (Figs. 5, 6, and 7), the SIN, the assembly plant code, and the range of model years. Immediately beneath these data all other plants and model years that could be represented by these particular core IR and SIN are listed. (This eliminates, to some extent, the necessity of reproducing all the other secondary undercoat samples that are equivalent to this core sample. In the computer these samples will be identified by their undercoat equivalency number.) The assembly plant and model years they represent are then given. By placing the color/chemical descriptor code next to the SIN within any particular core IR group, one can immediately determine which samples are identical in color and chemistry and which are distinguishable by color. For example, the grays from the 71dart1 and 69 mon6 (Table 4, core IR Gy6-9) are identical in color and chemistry. They are, however, different in color from the 66slite6, 74mon13 and 75cornt4.
Figures 5, 6, and 7 reproduce the core IR spectra corresponding to the data in Tables 4 to 6. Comparison between an unknown spectrum and these core IR spectra is essential. For example, from Table 4 the interpreted data from Gy6-1 and Gy6-13 indicate the same pigment constituents. However, the IR spectra clearly indicate differences in the talc between the samples. Subtle but reproducible differences can be seen in the Gy6-24 and Gy6-25 core IR spectra.

In the interpretation of the IR spectra, some difficulties arose concerning standard nomenclature. For instance, for the Bk6-9, Bk6-11, and Bk6-12 IR spectra, U.S. paint vendors classified the resin system as an epoxy acrylic, while Canadian vendors identified it as

TABLE 4-Gray core infrared data.

CIR^{a}	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Gy6-1	R3	1 P 2	60furyi	1	E	1960-
	R8	1P17	\ldots			...
		1P18				
Gy6-2	R1	1P5	60wind 1	2	R	1960
	...	1P18	61valil	2	R	1961-1962
			62 valn 2	3	B	1962-1964
Gy6-3	R1	1 P 2	62crown 1	4	C	1962
	R8	1P17	...	\ldots	\ldots	...
	...	1 P 18	\ldots	\ldots	...	\ldots
		1 P 21				
Gy6-4	R1	1P2	63 vali 5	5	E	1963
	R8	1P16	...	\ldots	\ldots	...
	\ldots	1 P 18			\ldots	
Gy6-5	R1	1P5	63polarl	7	R	1963-1965
	R8	1P15	E	1965
	...	1 P 18				
Gy6-6	R1	1 P 2	$65 \mathrm{FURY1} 2$	9	B	1965
	R8	1 P 17	F	1965
	...	1P18	...	\ldots	R	1966
	67valil3	15	B	1967
	\ldots		68dart12	19	B	1968
Gy6-7	R3	1P2	66 CORNT 2	10	A	1966-1969
	R8	1 P 7	C	1965
	...	1 P 16	\ldots	\ldots	\cdots	1967-1969
	...	1P17	D	1969
	\ldots	1P18	\ldots	...	E	1968-1969
	\ldots	...			G	1966-1970
	...	\ldots	66slite6	10	A	1966
	...	\cdots	68 CORNT 4	10	A	1968
	...		69 ${ }_{\text {NYORK1 }}$	10	C	1969
Gy6-8	R7	1P2	65 savoy 2	11	R	1965
	...	1P16	66FURY18	13	B	1966
	\ldots	1P19	$66 \mathrm{Fury8}$	14	R	1966
Gy6-9	R7	1P2	66 slite6	12	A	1966
	. .	1P17	69mon6	25	R	1969
	...	1P18	71dart1	25	B	1971
	$74 \mathrm{dart12}$	25	B	1974
	\ldots	...	74 mON 13	50	D	1974
	75dart6	25	B	1975
	\ldots	\ldots	75dart15	25	B	1975
			75 CORNT 4	56	G	1975
Gy6-10	R7	1P2	67FURY6	16	R	1967-1968
	...	1 P 7	68FURy9	16	R	1967-1968
	...	1P16	\ldots
		1 P 19	\ldots	\cdots	\cdots	
Gy6-11	R7	1P2	67pury6	17	R	1967-1968
	...	1 P 8	\ldots	. .	\ldots	...
	...	1P16	\ldots	\ldots	\ldots	\ldots
	...	1 P 19	\ldots	\ldots	\cdots	...
		1P21		\ldots	\cdots	
Gy6-12	R7	1P16	68 CORNT 3	18	A	1968
		1P18	.	\ldots	.	
Gy6-13	R7	1P2	68 Valin 6	20	R	1968
	...	1 P 17	69 bCUDA 3	21	B	1969-1970
	...	1P18	71 chall 3	21	B	1969
	\ldots	\ldots	71 valil	21	B	1971-1973
				20		1971
	\ldots	\cdots	710art2	20	R	1971

TABLE 4 (continued)-Gray core infrared data.

TABLE 4 (continued)-Gray core infrared data.

$\mathrm{CIR}^{\text {a }}$	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Gy6-23	\ldots	..	76CORD19	40	R	1976
	\ldots	\ldots	76 charg 2	40	R	1976
	\ldots	\ldots	77 cord 14	40	R	1977
	\ldots	...	77 charg 6	40	R	1977
			77 charg 1	40	R	1977
	R3 ${ }^{\text {b }}$	1 P 1	74 slite 4	44	A	1974
	R8	1P17	$74 \mathrm{dart15}$	46	B	1974
	...	1P18	74NPORT2	48	C	1974
	\ldots	...	75nport8	48	C	1975
	\ldots		75NPORT1	48	C	1975
Gy6-24			76nyork6	48	C	1976
	R3 ${ }^{\text {b }}$	1P2	75dart6	45	B	1975
	R8	1 P 17	75 vali 5	45	B	1974-1975
	...	1P18		45	A	1975
	\ldots	...	75CORD14	57	R	1975
			76grury2	61	D	1976
Gy6-25	R3 ${ }^{\text {b }}$	1P2	74nport1	47	C	1974
	R8	1 P 17	...		D	1975
	...	1P18	75 mon 10	47	D	1975
	\ldots	\ldots	$75 \mathrm{dart5}$	55	G	1975
	\ldots	\ldots	76cord 19	64	R	1976
	\ldots	\ldots	77gfury 3	60	D	1977
	\ldots	\ldots		\ldots	C	1976
			77 NPORT2	60	D	1976-1977
Gy6-26	R7	1P2	$74 \mathrm{mON17}$	49	D	1974
	...	1P17	...	\ldots
	\ldots	1P18	\ldots	\cdots	\cdots	...
	\ldots	1 P 21				
Gy6-27	R3	1P2	74 FURY 13	51	D	1974
	R8	1P16	...	\ldots	...	,
		1P21	-	\cdots		
Gy6-28	R3 ${ }^{\text {b }}$	1P2	$75 \mathrm{dart9}$	52	B	1975
	R8	1P17	76 GFURY 12	62	D	1976
	...	1P18	...	\ldots	D	,
	\ldots	1P21	\ldots		\cdots	
Gy6-29	R7	1P2	75nport8	53	C	1975
	\ldots	1P16		,
	\ldots	1 P 17	\ldots	...	\ldots	...
		1 P 18	...			
Gy6-30	R7	1P2	75 Valin 10	58	R	1975
	...	1P17	...	\ldots	.	
		1P18	\cdots	\ldots		
Gy6-31	R7	1P2	76CORD22	65	R	1976
	\ldots	1P16		...	\ldots	
		1P18	...			
Gy6-32	R1 ${ }^{\text {c }}$	1P2	77cord 16	67	R	1977
		1P16	-			
Gy6-33	R7	1P2	77cord14	66	R	1977
	...	1P8	\ldots	\ldots	.	\ldots
	\ldots	1P16	...	\ldots	\cdots	\ldots
	\ldots	1 P 17	...	\ldots	\ldots	\cdots
	\ldots	1 P 18	...	\ldots	\ldots	\ldots
		1 P 21	\ldots	\cdots	\cdots	
Gy6-34	R3 ${ }^{\text {c }}$	1P1	77CORD16	68	R	1977
	R8	1P16	

[^1]TABLE 5-Brown core infrared data.

CIR ${ }^{\text {a }}$	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Br6-1	R1	1 P3	60wind 1	2	R	1960
		1P12		\ldots
		1P17		\ldots
		1P18				
Br6-2	R7	1 P 3	61 valil	3	R	1961-1962
	.	1P15	63polar1	3	R	1963-1965
	\ldots	1P17			E	1965
	\ldots	$1 \mathbf{1} 18$	65savoy2	3	R	1965
Br6-3	R1	1 P 3	62 VALI 2	4	B	1962-1964
	...	1 P 7	\cdots	...
	\ldots	1 P 18	...	\ldots	\cdots	\ldots
		1P21				
Br6-4	R1	1 P 3	62CROWn 1	5	C	1962
	R8	1 P 8	...	\ldots	\cdots	...
	\ldots	1P15	\ldots	\ldots	\ldots	\ldots
	\ldots	1 P 18		\ldots	\ldots	\ldots
		1P21		\ldots	\cdots	...
Br6-5	R1	1 P 5	63 VALI 1	6	E	1963
	R8	1 P 7	...	\ldots	\ldots	...
	...	1 P 17	\ldots	\ldots	\ldots	\ldots
	\ldots	1P18			\ldots	\cdots
Br6-6	R1	1P3	64FURy4	7	A	1964
	...	1 P 17	...	\ldots	\ldots	...
	\ldots	1P18	\ldots	...	\cdots	\cdots
Br6-7	R1	1 P 3	65 FURy 12	8	B	1965
	R8	1 P 8	F	1965
	...	1 P 17	.		R	1966
	\ldots	1 P 18	67vali 3	8	B	1967
	,	1P21	68DART12	8	B	1968
Br6-8		1 P 3	66 CORNT 2	9	A	1966-1969
	R8	1 P 7	C	1965
	...	1 P 17	\ldots	\ldots	\square	1967-1969
	...	1 P 18	...	\ldots	D	1969
	\ldots	\ldots	E	1968-1969
	\ldots	\ldots	\ldots	\cdots	G	1966-1970
	\ldots	\cdots	66slite6	9	A	1966
	...	\ldots	68 CORNT 4	9	A	1968
	\ldots	\ldots	69 MYORK1	9	C	1969
			70slite6	9	A	1970
Br6-9	R7	1 P 3	66Fury 18	10	B	1966
	...	1 P 8	66FURY8	10	R	1966
	\cdots	1 P 12	67FURY6	10	R	1967-1968
	.	1P15	68 FURy9	10	R	1967-1968
	...	1 P 17	69 polar 8	10	R	1969
	\ldots	1 P 18	70 fury 14	10	R	1970
		\ldots	70mon2	10	R	1970
Br6-10	R7	1P3	68 vali 6	12	R	1968
	\ldots	1 P 8	77dart2	12	R	1971
	\ldots	1 P 17	...	\ldots
		1 P 18	...	\ldots
Br6-11	R7	1 P 3	69 bCuda 3	.	B	1969-1970
	.	1 P 8	73FURy8	23	F	1973
	\ldots	1 P 17	\ldots	\ldots	\ldots	\ldots
	\ldots	1 P 18	\ldots	\ldots	\cdots	\ldots
		1 P 21				
Br6-12	R7	1 P 3	69ROAD3	15	G	1969
	...	1P17	70slite6	18	A	1970

TABLE 5 (continued)-Brown core infrared data:

CIR ${ }^{\text {a }}$	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Br6-13	\ldots	1P18	70nport5	18	C	1970
		...	70road 4	18	R	1970
	\ldots	\ldots	71 Cornt2	18	A	1970-1973
	. \cdot	\ldots	71 chall 3	14	B	1969
						1971-1973
		\ldots	71dart 1	14	B	1971
	\ldots	\ldots	71 FURy 7	18	D	1970-1972
	\ldots	...	71polar 11	18	D	1971
	\cdots	\ldots	71dart1	18	R	1971
	\cdots	\ldots	72 nport 3	21	C	1972
	...	\ldots	73 fury 5	18	C	1971-1973
	\ldots	\ldots	73nyork3	18	C	1973
	...	\ldots	73nport5	21	C	1973
	...	\cdots	73 FuRy 5	18	D	1970
						1972-1973
	\ldots	\cdots	73FURY4	18	D	1973
	74 chall 6	25	B	1974
	,	\ldots	$74 \mathrm{~T} \& \mathrm{c} 1$	25	D	1974
	R7	1 P 3	69 FURY 12	16	R	1969
	...	1 P 8	70 GTx 3	19	R	1970-1971
	...	1 P 12	72 slite 3	19	R	1972
	...	1P15	72 slite 10	19	R	1972-1973
	...	1P17	75charg6	19	R	1973-1976
	\cdots	1 P 18	75 CORD 14	19	R	1975
	...	1P21	75 CORd 22	19	R	1975
	75 valil 10	19	R	1975
	\ldots	\cdots	76charg2	19	R	1976
	\therefore.	...	77 CORD 14	16	R	1977
	...	\cdots	77 charg 6	16	R	1977
Br6-14			77 charg 1	16	R	1977
	R7	1 P 3	69mon6	17	R	1969
	...	1P17	,	.	R	
	\ldots	1P18	...	\cdots	\ldots	\ldots
		1P21	\ldots	...	\ldots	...
Br6-15	R3	1 P 3	71valis	20	B	1971
	R8	1P8	. \cdot	\cdots	\ldots	...
	...	1P17	...	\ldots	.	\ldots
	...	1P18	\ldots	\ldots	\ldots	\ldots
		1P21	...	\cdots		
Br6-16	R7	1P3	72slite 11	22	F	1972
	...	1P17	\ldots	\cdots
	\ldots	1 P 18	.	\ldots	\cdots	
		1P21	\ldots	\ldots	\ldots	\ldots
Br6-17	R3 ${ }^{\text {b }}$	1P3	74slite 4	24	A ${ }^{\text {a }}$	1974
	R8	1 P 17	74 dart 15	24	B	1974
	...	1P18	74nPorti	24	C	1974
		\cdots	D	1975
	...	\ldots	75vali5	24	B	1974-1975
	...	\ldots	\ldots		A	1974
	$75 \mathrm{dart6}$	24	B	1975
	\cdots	\cdots	75nport8	24	C	1975
	.	\cdots	75nportl	24	C	1975
	\cdots	...	75 grury 15	28	D	1975
	\ldots	...	75 CORNT 4	29	G	1975
	75dart5	24	G	1975
	\ldots	\cdots	75 fury 6	29	G	1975
	\ldots	\ldots	75 CORD 14	29	R	1975

TABLE 5 (continued)-Brown core infrared data. ${ }^{\text {a }}$

CIR^{a}	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Br6-18	\ldots	\ldots	76charg 11	29	A	1976
	\ldots	\cdots	76nPORT3	32	C	1976
	\ldots	\cdots	$76 \mathrm{NPORT1}$	32	C	1976
			76 CORD 19	29	R	1976
	R3 ${ }^{\text {b }}$	1P3	74 NPORT 2	26	C	1974
	R8	1 P 17	76NYORK6	26	C	1976
	...	1P18	76GFury 2	26	D	1976
	...	1P21	77fury3	26	D	1977
Br6-19					C	1976
	R7	1 P 17	74mON17	27	D	1974
	...	1 P 18	...	\ldots
		1 P 21			\ldots	...
Br6-20	R3	1P16	76 CORNT 5	30	A	1976
	R8	\ldots	\cdots	
Br6-21	R3 ${ }^{\text {c }}$	1P3	76FURY2	31	A	1976
	...	1 P 8	...	\ldots	A	...
	\ldots	1 P 15	...	\ldots	\ldots	...
		1P18			.	\ldots
Br6-22	R3 ${ }^{b}$	1 P 3	77 ${ }_{\text {NPORT }}$	33	D	1976-1977
	R8	1 P 17	\cdots	\ldots	\ldots	. .
		1P18				
Br6-23	R7	1 P 3	76 cord 19	34	R	1976
	. . .	1 P 8	...	\ldots	\ldots	. .
	...	1P17	\cdots	...	\cdots	\ldots
		1P18	...	\ldots	-	
Br6-24	R7	1 P 3	68CORNT3	11	A	1968
	...	1 P 16
	\ldots	1 P 18	...	\ldots	...	\ldots

${ }^{a} \mathrm{CIR}=$ core infrared spectrum number.
${ }^{b}$ Modifier descriptor M1 (styrene).
${ }^{c}$ Modifier descriptor M2 (melamine).
an epoxy ester. To avoid confusion, we adopted the convention that if the percent transmittance value of the $1730 \mathrm{~cm}^{-1}$ carbonyl peak was less than or equal to that for the $1510 \mathrm{~cm}^{-1}$ epoxy peak, the resin system was defined as an epoxy ester. Where the carbonyl peak was greater than the epoxy peak, the resin system was defined as an epoxy acrylic, unless the carbonyl ester stretching band indicated the ester modification was an alkyd ($1270 \mathrm{~cm}^{-1}$) type.
To avoid problems arising in the positive identification of pigment constituents, we identified only those that were well resolved. In some instances, zinc oxide and titanium dioxide may be present; however, other pigment constituents such as china clay interfere in the positive identification of these components. Difficulties also arose in the interpretations where there was an indication of orthophosphate or chromate. In those circumstances only the anion was identified. For instance, the 74 mon 17 (Gy6-26 and Br6-19), 75dart9 (Gy6-28), and the 75 cord 22 (Bk6-7) spectra all contain strong orthophosphate peaks, but from the IR spectra it is hard to confirm whether it is zinc orthophosphate or another orthophosphate. The exact chemical nature of the chromate present in 66 FURy 18 ($\mathrm{Br} 6-9$) and 76FURY2 (Br6-21) provides a similar example. However, the chromate in $\operatorname{Br} 6-21$ is probably strontium chromate. In the case of the 67FURy6 (Gy6-11) and 77cord14 (Gy6-33) samples it is difficult to understand why an undercoat next to the topcoat contains orthophosphate and chromate. In addition, it is impossible to determine from these core IR whether zinc

TABLE 6-Black core infrared data.

CIR ${ }^{\text {a }}$	Undercoat Chemical Data		SIN	Color/ Chemical Descriptor	Assembly Plant	Years
	Resin Descriptor	Pigment Descriptor				
Bk6-1	R3 ${ }^{\text {b }}$	1P17	68Dart8	1	B	1968
	R8	1 P 18	76FURY8	14	A	1976
		1 P 21	...	\ldots	...	
Bk6-2	$\mathrm{R}^{7}{ }^{\text {b }}$	1P17	70dart4	3	R	1970
	...	1P18	75 dart 15	9	B	1975
	75 vali 3	19	B	1975
	75 cornt 4	11	G	1975
	\ldots		75fury6	11	G	1975
Bk6-3	R3	1 P 15	70dart10	4	R	1970
	...	1P16	\ldots	\ldots	\cdots	...
	.	1 P 18	\ldots		..	
Bk6-4	R7	1 P 17	73dart 4	6	B	1973
	...	1P18	74slite2	6	A	1973-1974
	...	1 P 21	...	6	B	1973-1974
	\ldots	6	D	1973-1974
	\ldots	\ldots	...	6	F	1974
	...	\ldots		6	G	1974
			75 GFURY 9	10	D	1975
Bk6-5	R7	1 P 17	73charg 4	7	A	1973
	...	1P18	...	\ldots	D	1974
	\ldots	\cdots	F	1973
	...	\ldots	73Fury 4	7	D	1973
	\ldots	...	74 chall 6	7	B	1974
	74dart12	7	B	1974
	\cdots	\cdots	74 mon 13	7	D	1974
	...		76 charg 2	19	R	1976
Bk6-6	R1	1P2	74FURY13	8	D	1974
		1 P 13	...			
Bk6-7	R7	1 P 17	75CORD22	12	R	1975
	...	1P18	...	\ldots	\cdots	.
		1P21	\ldots	\cdots		
Bk6-8	R3 ${ }^{\text {b }}$	1P21	76 CORNT 5	13	R	1976
	R8	\ldots		,
Bk6-9	R3 ${ }^{\text {b }}$	1P2	76CHARG11	15	A	1976
	R8	1 P 17	76FURy1	16	A	1976
	...	1 P 18	\ldots	15	A	1976
	76volar 4	15	B	1976-1977
	\ldots	\ldots	A	1977
	...	\ldots	76nYork3	17	C	1976-1977
	\ldots	F	1976-1977
	\ldots	\ldots	G	1976
	76nPORT1	17	C	1976
	\ldots	...	77 NYORK 1	17	C	1977
	\ldots	...	77 NPORT2	15	D	1976-1977
			77 charg 1	22	R	1977
Bk6-10	R3 ${ }^{\text {b }}$	1 P 17	76NYORK6	18	C	1976
	R8	1 P 18	77 MYORK4	18	C	1977
Bk6-11	R3 ${ }^{\text {b }}$	1P2	77 volar 4	20	B	1977
	R8	1 P 17 \cdot	A	1977
	.	1 P 18	.	\cdots	\ldots	. .
		1 P 21	\ldots			
Bk6-12	R3 ${ }^{\text {b }}$	1P2	77NYORK1	21	C	1977
	R8	1 P 17	\ldots	\ldots
	...	1 P 18	\cdots	\cdots	\ldots	...
		1 P 21	\cdots	\cdots	\cdots	\ldots

[^2]644 JOURNAL OF FORENSIC SCIENCES

FIG. 5-Gray core infrared spectra.

FIG. 5-continued.

FIG. 5-continued.
chromate and not orthophosphate is present. Elemental analysis and X-ray diffraction data will be necessary to completely individualize all pigment components.

Judging from the analysis of the topcoat IRs, alkyd melamine formaldehyde formulations were employed in the U.S. assembly plants until 1964 and in the Canadian plant until 1965. In the 1965 production year, the U.S. plants converted to acrylic melamine formaldehyde formulations, with the exception of the Detroit and Los Angeles plants, which appeared to convert in 1969 and 1966, respectively. Although our data are limited, they indicate that the Hamtramck (1965 to 1967), Newark (1965 to 1966), and St. Louis (1965 to 1966) plants used straight acrylic melamine formaldehyde formulations, while Lynch Road and Windsor used a styrene-modified formulation on conversion from alkyds to acrylics. All assembly plants converted to the styrene-modified fomulations in 1969 and styrene-modified nonaqueous dispersion acrylic melamine formaldehyde formulations in 1973. Acrylonitrile-modified formulations were observed in all plants in 1974 and 1975 and as early as 1973 in Lynch Road. However, analysis of a greater number of topcoats would have to be conducted before a definite correlation between the color and the presence of acrylonitrile could be made.

We have found it useful to produce a series of flow charts of the color and chemical information contained in Table 3. Figure 8 is a flow chart of the undercoat systems we consider to be the "normal" (most frequently observed) systems used on Chrysler Corp. passenger vehicles. This chart identifies the model years and assembly plants where a particular undercoat sequence was observed. The undercoat sequences indicated in Fig. 8 consist of the color/ chemical descriptor codes with the corresponding undercoat codes within the brackets. The bold border lines outline the range that particular sequence was employed on, while the blank squares within the lighter borders indicate we have no undercoat information. One can quite rapidly determine some general undercoat trends. For example, at the Windsor plant from 1966 to 1969, the brown undercoats (/10) in these four years were identical, while the trend in the change of the grays $(14 /, 16 /$, and $23 /$) is quite evident.

Figure 8 does not contain all the pertinent undercoat data. A similar flow chart containing all the color/chemical descriptor sequences should be constructed from, and used in conjunction with, the data in Tables 3 to 6 . We have found our flow chart to be useful. For example, it can readily be determined from the flow charts that the first black undercoat on a Chrysler product was observed in 1968 out of the Hamtramck plant. This cannot be determined from Fig. 8.

The paint sequences on the header bars can also indicate trends. All the samples from header bars contained the undercoat sequence on top of the fiberglass. Not only were the fiberglass substrate colors different, the undercoat sequences also varied substantially. The sequences on 70 mon 2 and $74 \mathrm{~T} \& \mathrm{c} 1$, for instance, showed no resemblance to the normal

FIG. 6-Brown core infrared spectra.

FIG. 6-continued.

FIG. 6-continued.

FIG. 6-continued.

FIG. 6-continued.

FIG. 6-continued.

FIG. 6-continued.

FIG. 6-continued.
undercoat sequences found on the body of these vehicles, while the 75 FURY6 and 77 NPORT 2 sequences were identical to those found on their bodies. In some cases it was apparent that the header bars arrived prepainted at the factory, whereupon they were bolted onto the vehicle and subsequently received the same undercoat treatment as the rest of the vehicle (74chall6, 76charg1, 76charg2 and 77charg1). In these instances the undercoats observed under the normal sequences were not found on any other portions of the sheet metal. In other circumstances (71DART1), the normal brown undercoat was observed but the normal gray was not. Precisely what the initial painting sequence was on this header bar could not be determined.
The tables and figures have been designed to interrelate chemical and relative color information to production information without requiring an authentic paint chip. One method of the data can be illustrated by considering an unknown paint sample composed of a $\mathrm{Br} * / \mathrm{Gy} /$ Br layer sequence, where the asterisk indicates a metallic finish. The identification of the source of this paint chip without authentic paint standards must be done on the basis of chemistry, topcoat color, and relative undercoat colors as defined by the Munsell coordinates. Assume that from the chemical analysis of each layer it was determined that the Br^{*} topcoat consisted of an acrylic melamine formaldehyde resin system, the gray consisted of an ester-modified epoxy resin system containing titanium dioxide, talc, and barium sulfate, and the brown was composed of an ester- or alkyd-modified epoxy resin system containing iron oxide, chromate, silica, talc, barium sulfate, and phosphate.
The information from the topcoat chemistry indicates that this paint sequence is an original factory finish used since about 1966. The absence of an acrylonitrile peak, although not definitive, should be kept in mind, as it was a common modification in the mid-1970s.
By comparing the data from the gray undercoat with the undercoat chemical data column in Table 4, several possible spectra for comparison can be identified (core IRs Gy6-9 and Gy6-13 being direct matches). Assume that after comparing the IR spectra for the gray a direct match was found to exist between the unknown and Gy6-13 (Fig. 5). The information in Table 4 ind cates that this particular gray chemistry was used in Hamtramck, Detroit, Newark, and Windsor in various years. It is not possible to determine whether the gray is actually a color/chemical descriptor code $20,21,37,38$, or 43 without an authentic color standard. However, by using the SIN information from Table 4, Table 3 can be searched to identify those undercoats associated with Gy6-13. This search would identify the SIN's 68 van 6 (Br6-10), 69bcuda3 (Br6-11), 71vali1 (Br6-15), 71chall3 (Br6-12), 71dart2 (Br6-10 and Br6-12), 72nport3 (Br6-12), 72slite11 (Br6-16), 73dart4 (Bk6-4), 73nport5 (Br6-12), and 73 fury 8 (Br6-11). The chemical information already obtained would indicate that the samples probably were not $\mathrm{Br} 6-12$ or $\mathrm{Br} 6-16$ (Table 5). The 73dart4 (Table 3) can be eliminated from the search as it is a Gy/Bk undercoat layer sequence. Assume the brown matched Br6-15 (Fig. 6). Table 5 would then cross-index the fact that the sample was a 71vali1. From Table 2 it can be determined that in 1971 Hamtramck manufactured the vehicle lines dart, demon, chall, vali, and bcuda. By correlating this information with Figs. 2 and 3, it is possible to determine which vehicle series were manufactured and the vehicles most likely to be found in our area.

However, if the unknown brown spectra had matched the Br6-11, then another very significant step would have to be taken. The topcoat color, when compared with the National Bureau of Standards or Du Pont of Canada automotive topcoat color standard system, may differentiate between the 69 bcuda 3 and the 73 FURy8. After the Br^{*} topcoat is compared to the Du Pont standards it may match, for instance, the "chestnut metallic" (T8) used in 1973 and not the "dark bronze metallic" (T7) used in 1969. Where a topcoat color was used in both years, such as the "light gold" (Y3) or "white" (W1), then other factors, such as the wheel base obtained from skid marks, if available, may assist in determining whether the car was a compact (69_{BCUDA}) or a full-size vehicle (73FURY).
Once a vehicle line has been identified from a core SIN, for instance the 73Fury8, a par-

FIG. 7-Black core infrared spectra.

FIG. 7-continued.

FIG. 7-continued.

FIG. 7-continued.

FIG. 8-Normal undercoat color/chemical descriptor sequences.
tial vehicle identification number (VIN) for a computer search could be constructed from the Vational Auto Theft Books. From Table 2 we could determine that the polar, mon, fury, and gran vehicle lines were manufactured in Newark. However, the polar and gran lines were not normally imported into our area and, from the apparent marketing trends, the most likely vehicle series would be either a Monaco or a Fury III (Figs. 2 and 3). Thus, the most likely partial VIN for the initial search would have the first and second digits "DP" or "PH," indicating the vehicle series, the sixth digit "3," indicating the model year, and the seventh digit "F," indicating the assembly plant.

Summary

Microscopic and chemical analysis of 1452 collected 1960 to 1977 Chrysler Corp. paint samples has identified 108 core samples that can be employed for the identification and comparison of Chrysler passenger vehicle paint samples. The pertinent information necessary to identify a paint chip bearing an original Chrysler paint system has been discussed.

Acknowledgments

The authors gratefully acknowledge the cooperation of the Edmonton, Alta., Police Department Hit and Run Detail and the Royal Canadian Mounted Police K Division, Traffic Division, for collecting the samples, as well as the officer in charge, RCMP Crime Detection Laboratory, Edmonton, for his encouragement and support of this project.

References

[1] Audette, R. J. and Percy, R. F. E., "A Rapid, Systematic, and Comprehensive Classification System for the Identification and Comparison of Motor Vehicle Paint Samples. I: The Nature and Scope of the Classification System," Journal of Forensic Sciences, Vol. 24, No. 4, Oct. 1979, pp. 790-807.
[2] Munsell Book of Color, Matte Finish Collection, Macbeth Div. of Kollmorgan Corp., Baltimore, MD, 1976.

Address requests for reprints or additional information to
R. J. Audette, Ph.D.

Provincial Analysts Laboratory
6909 116th St.
O. S. Longman Bldg.

Edmonton, Alberta, Canada T6H 4P2

[^0]: Received for publication 26 May 1981; revised manuscript received 21 Oct. 1981; accepted for publication 10 Nov. 1981.
 ${ }^{1}$ Assistant director, Provincial Analyst Laboratory, Alberta Agriculture, Edmonton, Alta., Canada.
 ${ }^{2}$ Technologist in charge, Instrumentation Section, Royal Canadian Mounted Police, Crime Detection Laboratory, Edmonton, Alta., Canada.

[^1]: ${ }^{a} \mathrm{CIR}=$ core infrared spectrum number.
 ${ }^{b}$ Modifier descriptor M1 (styrene).
 ${ }^{c}$ Modifier descriptor M4 (benzoguanamine formaldehyde).

[^2]: ${ }^{a} \mathrm{CIR}=$ core infrared spectrum number.
 ${ }^{b}$ Modifier descriptor M1 (styrene).

